\(\int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [789]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 170 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (2 a e^2 g-c d (e f+d g)\right ) \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2} (c d f-a e g)^{3/2}} \]

[Out]

-(2*a*e^2*g-c*d*(d*g+e*f))*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)
^(1/2))/g^(3/2)/(-a*e*g+c*d*f)^(3/2)-(-d*g+e*f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(-a*e*g+c*d*f)/(g*x+
f)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {892, 888, 211} \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {\left (2 a e^2 g-c d (d g+e f)\right ) \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} (c d f-a e g)^{3/2}}-\frac {(e f-d g) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x) (c d f-a e g)} \]

[In]

Int[(d + e*x)^(3/2)/((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

-(((e*f - d*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x))) - ((2
*a*e^2*g - c*d*(e*f + d*g))*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*
Sqrt[d + e*x])])/(g^(3/2)*(c*d*f - a*e*g)^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 892

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(e*f - d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/(g*(n + 1)*(c*e*f + c*d*g
- b*e*g))), x] - Dist[e*((b*e*g*(n + 1) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3))/(g*(n + 1)*(c*e*f + c*d*g - b*e
*g))), Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p
}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m +
 p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}+\frac {\left (e \left (\frac {1}{2} c d e^2 f+\frac {3}{2} c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{g \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )} \\ & = -\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (e^2 \left (2 a e^2 g-c d (e f+d g)\right )\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{g (c d f-a e g)} \\ & = -\frac {(e f-d g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g (c d f-a e g) \sqrt {d+e x} (f+g x)}-\frac {\left (2 a e^2 g-c d (e f+d g)\right ) \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2} (c d f-a e g)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.91 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {d+e x} \left (-\frac {\sqrt {g} (-e f+d g) (a e+c d x)}{(-c d f+a e g) (f+g x)}+\frac {\left (-2 a e^2 g+c d (e f+d g)\right ) \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{3/2}}\right )}{g^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[d + e*x]*(-((Sqrt[g]*(-(e*f) + d*g)*(a*e + c*d*x))/((-(c*d*f) + a*e*g)*(f + g*x))) + ((-2*a*e^2*g + c*d*
(e*f + d*g))*Sqrt[a*e + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/(c*d*f - a*e*g)^(3/2))
)/(g^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(336\) vs. \(2(154)=308\).

Time = 0.56 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.98

method result size
default \(\frac {\left (-2 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a \,e^{2} g^{2} x +\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c \,d^{2} g^{2} x +\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c d e f g x -2 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a \,e^{2} f g +\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c \,d^{2} f g +\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c d e \,f^{2}-\sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, d g +\sqrt {c d x +a e}\, \sqrt {\left (a e g -c d f \right ) g}\, e f \right ) \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, g \left (a e g -c d f \right ) \left (g x +f \right ) \sqrt {\left (a e g -c d f \right ) g}}\) \(337\)

[In]

int((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-2*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*e^2*g^2*x+arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f
)*g)^(1/2))*c*d^2*g^2*x+arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*e*f*g*x-2*arctanh(g*(c*d*x+a*
e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*e^2*f*g+arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d^2*f*g+arc
tanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*e*f^2-(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*d*g+(c*d
*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)*e*f)/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/(c*d*x+a*e)^(1/2)/g/(a*e*
g-c*d*f)/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 427 vs. \(2 (154) = 308\).

Time = 0.32 (sec) , antiderivative size = 896, normalized size of antiderivative = 5.27 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [-\frac {{\left (c d^{2} e f^{2} + {\left (c d^{3} - 2 \, a d e^{2}\right )} f g + {\left (c d e^{2} f g + {\left (c d^{2} e - 2 \, a e^{3}\right )} g^{2}\right )} x^{2} + {\left (c d e^{2} f^{2} + 2 \, {\left (c d^{2} e - a e^{3}\right )} f g + {\left (c d^{3} - 2 \, a d e^{2}\right )} g^{2}\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (c d e f^{2} g + a d e g^{3} - {\left (c d^{2} + a e^{2}\right )} f g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{2 \, {\left (c^{2} d^{3} f^{3} g^{2} - 2 \, a c d^{2} e f^{2} g^{3} + a^{2} d e^{2} f g^{4} + {\left (c^{2} d^{2} e f^{2} g^{3} - 2 \, a c d e^{2} f g^{4} + a^{2} e^{3} g^{5}\right )} x^{2} + {\left (c^{2} d^{2} e f^{3} g^{2} + a^{2} d e^{2} g^{5} + {\left (c^{2} d^{3} - 2 \, a c d e^{2}\right )} f^{2} g^{3} - {\left (2 \, a c d^{2} e - a^{2} e^{3}\right )} f g^{4}\right )} x\right )}}, -\frac {{\left (c d^{2} e f^{2} + {\left (c d^{3} - 2 \, a d e^{2}\right )} f g + {\left (c d e^{2} f g + {\left (c d^{2} e - 2 \, a e^{3}\right )} g^{2}\right )} x^{2} + {\left (c d e^{2} f^{2} + 2 \, {\left (c d^{2} e - a e^{3}\right )} f g + {\left (c d^{3} - 2 \, a d e^{2}\right )} g^{2}\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d e g x^{2} + a d e g + {\left (c d^{2} + a e^{2}\right )} g x}\right ) + {\left (c d e f^{2} g + a d e g^{3} - {\left (c d^{2} + a e^{2}\right )} f g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{c^{2} d^{3} f^{3} g^{2} - 2 \, a c d^{2} e f^{2} g^{3} + a^{2} d e^{2} f g^{4} + {\left (c^{2} d^{2} e f^{2} g^{3} - 2 \, a c d e^{2} f g^{4} + a^{2} e^{3} g^{5}\right )} x^{2} + {\left (c^{2} d^{2} e f^{3} g^{2} + a^{2} d e^{2} g^{5} + {\left (c^{2} d^{3} - 2 \, a c d e^{2}\right )} f^{2} g^{3} - {\left (2 \, a c d^{2} e - a^{2} e^{3}\right )} f g^{4}\right )} x}\right ] \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*((c*d^2*e*f^2 + (c*d^3 - 2*a*d*e^2)*f*g + (c*d*e^2*f*g + (c*d^2*e - 2*a*e^3)*g^2)*x^2 + (c*d*e^2*f^2 + 2
*(c*d^2*e - a*e^3)*f*g + (c*d^3 - 2*a*d*e^2)*g^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*
a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*
e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(c*d*e*f^2*g + a*d*e*g^3 - (c*d^2 + a*e^2)*f*g^2)*s
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^3*g^2 - 2*a*c*d^2*e*f^2*g^3 + a^2*d*e^2*f
*g^4 + (c^2*d^2*e*f^2*g^3 - 2*a*c*d*e^2*f*g^4 + a^2*e^3*g^5)*x^2 + (c^2*d^2*e*f^3*g^2 + a^2*d*e^2*g^5 + (c^2*d
^3 - 2*a*c*d*e^2)*f^2*g^3 - (2*a*c*d^2*e - a^2*e^3)*f*g^4)*x), -((c*d^2*e*f^2 + (c*d^3 - 2*a*d*e^2)*f*g + (c*d
*e^2*f*g + (c*d^2*e - 2*a*e^3)*g^2)*x^2 + (c*d*e^2*f^2 + 2*(c*d^2*e - a*e^3)*f*g + (c*d^3 - 2*a*d*e^2)*g^2)*x)
*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x +
 d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (c*d*e*f^2*g + a*d*e*g^3 - (c*d^2 + a*e^2)*f*g^2)*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f^3*g^2 - 2*a*c*d^2*e*f^2*g^3 + a^2*d*e^2*f*g^4 +
 (c^2*d^2*e*f^2*g^3 - 2*a*c*d*e^2*f*g^4 + a^2*e^3*g^5)*x^2 + (c^2*d^2*e*f^3*g^2 + a^2*d*e^2*g^5 + (c^2*d^3 - 2
*a*c*d*e^2)*f^2*g^3 - (2*a*c*d^2*e - a^2*e^3)*f*g^4)*x)]

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )^{2}}\, dx \]

[In]

integrate((e*x+d)**(3/2)/(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral((d + e*x)**(3/2)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)**2), x)

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}^{2}} \,d x } \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 469 vs. \(2 (154) = 308\).

Time = 0.41 (sec) , antiderivative size = 469, normalized size of antiderivative = 2.76 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {c d e^{2} f \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) + c d^{2} e g \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - 2 \, a e^{3} g \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right ) - \sqrt {-c d^{2} e + a e^{3}} \sqrt {c d f g - a e g^{2}} e}{\sqrt {c d f g - a e g^{2}} c d f g {\left | e \right |} - \sqrt {c d f g - a e g^{2}} a e g^{2} {\left | e \right |}} + \frac {e {\left (\frac {{\left (c^{2} d^{2} e^{2} f + c^{2} d^{3} e g - 2 \, a c d e^{3} g\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{{\left (c d f g {\left | e \right |} - a e g^{2} {\left | e \right |}\right )} \sqrt {c d f g - a e g^{2}} e} - \frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{2} d^{2} e^{2} f - \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{2} d^{3} e g}{{\left (c d e^{2} f - a e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} g\right )} {\left (c d f g {\left | e \right |} - a e g^{2} {\left | e \right |}\right )}}\right )}}{c d} \]

[In]

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

-(c*d*e^2*f*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + c*d^2*e*g*arctan(sqrt(-c*d^2*e + a*
e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 2*a*e^3*g*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) -
 sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*e)/(sqrt(c*d*f*g - a*e*g^2)*c*d*f*g*abs(e) - sqrt(c*d*f*g - a*
e*g^2)*a*e*g^2*abs(e)) + e*((c^2*d^2*e^2*f + c^2*d^3*e*g - 2*a*c*d*e^3*g)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*
e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/((c*d*f*g*abs(e) - a*e*g^2*abs(e))*sqrt(c*d*f*g - a*e*g^2)*e) - (sqr
t((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^2*d^2*e^2*f - sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^2*d^3*e*g)/((c*
d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g)*(c*d*f*g*abs(e) - a*e*g^2*abs(e))))/(c*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{3/2}}{{\left (f+g\,x\right )}^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

[In]

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)